31.03.2017 - Prof. Dr. Jan Benedikt moves to Christian-Albrechts University Kiel

At April 1st, 2017 Jan Benedikt was appointed full professor for experimental plasma physics at Christian-Albrechts University Kiel. The research department will continue the collaboration with the group of Prof. Benedikt and will strenghten thereby the ties with CAU.

In 2004 Dr. Jan Benedikt joined RUB as a PostDoc in the research group reactive plasmas of Prof. von Keudell. He build up the experiments on mass spectrometry, µ-plasmas, and plasma medicine. In 2010 he was appointed a junior professorship for Coupled Plasma-Solid State Systems at the faculty for plasma physics and astronomy. During his time at RUB, he supervised six PhD thesis and numereous master and bachelor thesis.

The research department plasmas with complex interactions whishes Jan Benedikt all the best for his future and looks forward to many fruitful collaborations.


The Research Department Plasma is deeply saddened by the passing of Prof. Walter Lempert on April 11, 2015. He collaborated closely for many years with Prof. Uwe Czarnetzki and his group at EP5. He will be greatly missed.

"The department was deeply saddened by the passing of Walter Lempert on April 11, 2015. 
Lempert was a faculty member in the Department of Mechanical and Aerospace Engineering and co-director of the Non-Equilibrium Thermodynamics Laboratory (NETL), a major research laboratory containing state-of-the-art computational and experimental facilities among the most advanced at any U.S. university.
The NETL thrust area is energy, fluid and thermal systems, studying effective fuel use, reduced emissions, improved performance and cost effectiveness – critically important industrial and societal goals. Lempert and his colleagues led research and education focused on analytical, computational and experimental techniques for achieving these goals.
Lempert’s primary research was on the application of atomic and molecular spectroscopy to problems of engineering interest, inherently interdisciplinary, combining such diverse subjects as nonlinear optics, fluid mechanics, plasma physics and energy transfer. He is a notable author of numerous publications, papers and presentations helping to enhance the department’s reputation in energy, fluid and thermal systems.
Lempert left an indelible mark at Ohio State and a legacy of dedicated excellence in education and research. His cheerful personality, friendliness and warmth among faculty, staff and students will be greatly missed."

link to obituary Walter Lempert

01.12.2010 - 13th WELTPP in Kerkrade (NL): a forum for young plasma scientists

On November 25-26, the thirteenth Workshop on the Exploration of Low Temperature Plasma Physics was held in Kerkrade (NL). This workshop is aimed at young scientists with a research focus on low-temperature plasma physics and, in particular, at young scientists in the diploma and master's phase, PhD students and post-docs. In particular, the WELTPP is intended to provide these young low-temperature plasma researchers with a forum for getting to know each other, learning from each other, and exchanging knowledge. Therefore, in addition to presenting research results and establishing contacts, the main focus is on integrating newcomers into this research community.
The international orientation of the workshop is reflected in both the organization and the origin of the participants. Organized and sponsored by the Research Department "Plasmas with complex interactions" of the Ruhr-University Bochum, the Centre for Plasma Physics of Queen's University Belfast and the Dutch Centrum voor Plasmafysica en Stralingstechnologie (CPS) of Eindhoven University of Technology, a large part of the 73 workshop participants also come from the Netherlands, Northern Ireland and Germany. The day's schedule will focus on the shared experience in the historic ambience of the former monastery complex of Rolduc. Therefore, the scientific program is rounded off with the common meals: a typical Dutch lunch and a coffee break. The social highlight will be the evening dinner followed by an informal and enjoyable bar atmosphere in the vaults of Rolduc. Finally, the program of the second day of the workshop is also broken up by a joint breakfast, a coffee break and lunch.
This community-oriented course of the day contributed once again to the relaxed and pleasant atmosphere during the workshop. In addition, new research findings were gathered on a scientific level and further collaborations were created. The thirteenth WELTPP has thus once again proven to be a success all along the line. 

Recent research achievements

A new map of the sky with hundreds of thousands of galaxies

© RUB, Marquard

The group of Prof. Dettmar from the Astronomical Insitute contribute to the special issue of the journal "Astronomy & Astrophysics".

A team of astronomers from the Ruhr-Universität Bochum (RUB) has studied one of the discovered galaxies in detail and found a characteristic radiation distribution that suggests processes in the formation of galaxies and our Milky Way. 

The Lofar Telescope 

Lofar is a vast European network of radio telescopes linked together by a high-speed fibre-optic network, whose measurement signals are combined into a single signal. Powerful supercomputers convert 100,000 individual antennas into a virtual reception dish with a diameter of 1,900 kilometers. Lofar operates in the frequency ranges between about 10 to 80 megahertz and 110 to 240 megahertz, which have so far been largely unexplored. It is controlled by the Astron research facility in the Netherlands and is considered the world's leading telescope of its kind. There are six measuring stations in Germany which are operated by various scientific institutions.

Supernovae influence the evolution of galaxies

Dr. Arpad Miskolczi of the RUB Chair of Astronomy is one of the first authors of the collection of research results, all based on the analysis of a first phase of the multi-year project. In collaboration with international colleagues, he has investigated one of the many newly discovered galaxies in more detail. The object with the catalogue name NGC 3556 shows a characteristically different radiation distribution in the radio range than in visible light. "From this we conclude that the accumulation of numerous huge stellar explosions, so-called supernovae, releases so much energy that the gas between the stars, interspersed with magnetic fields and particles of cosmic rays, leaves the galaxy,"; explains Prof. Dr. Ralf-Jürgen Dettmar. These processes have influenced the evolution of Milky Way systems over billions of years. By comparing different such objects, the researchers hope to gain information about the origin of our own Milky Way.

Black holes, magnetic fields, galaxy clusters

With the help of Lofar, scientists have been able to create a new sky map. Many of the galaxies depicted were previously unknown because they are extremely far away and their radio signals have to travel billions of light years to reach Earth.

When scientists observe the sky with a radio telescope, they mainly see radiation from the vicinity of black holes, which are millions of times heavier than the sun. With Lofar, the researchers want to find out what influence the black holes have on the galaxies in which they are located and where they come from. Thanks to Lofar's sensitivity, the teams have already been able to show that black holes are present in all giant galaxies and that they are constantly growing. 

The radio radiation received by Lofar can also be used to measure cosmic magnetic fields. The researchers have also been able to detect magnetic structures between galaxies, thus proving theoretical assumptions for the first time. 

The fusion of two clusters of galaxies produces radio emissions - so-called radio halos - with a size of millions of light years. With Lofar they can be tracked down. The researchers learn a lot from this about the gas at the edge of the gigantic clusters of galaxies.

Gigantic amounts of data

The creation of low frequency radio sky maps requires both considerable telescope and computational time and requires analysis of the data by large teams. "Lofar produces gigantic amounts of data - we have to process the equivalent of ten million DVDs. This places the highest demands on software and hardware and is only possible through an international and interdisciplinary team,"; says Prof. Dr. Dominik Schwarz of Bielefeld University and representative of Germany to the Lofar steering committee. 

"In Germany, we worked together with Forschungszentrum Jülich to efficiently convert the huge amounts of data into high-quality images. These images are now public and will allow astronomers to study the evolution of galaxies in unprecedented detail,"; adds Prof. Dr. Ralf-Jürgen Dettmar. 

The Forschungszentrum Jülich accommodates around 15 petabytes of Lofar data. "This is almost half of all Lofar data, one of the largest astronomical data collections in the world. The processing of these gigantic data sets represents a great challenge. What would have taken centuries on conventional computers could have been reduced to one year by using innovative algorithms and extremely powerful computers,"; says Prof. Dr. Dr. Thomas Lippert, Director of the Jülich Supercomputing Centre. Jülich is one of the three data centres of the Lofar project. In addition, the Jülich Supercomputing Centre manages the data network traffic between the German Lofar stations and the central Lofar computer in Groningen.

15 million radio sources expected

The 26 papers now published in a special issue of Astronomy & Astrophysics are based on only about two percent of the observations planned with Lofar. The scientists now want to map the entire northern celestial sphere. After all, they expect to find around 15 million radio sources.

The original press releases can be found here.