- Details
Project Week during Easter Break
During the first week of the Easter break, the project weeks for female high school students (in German Schülerinnenprojektwoche) took place and opened the doors towards plasma physics, astronomy and physics in medicine for school students grade 8 to 10.
Hosting three projects, the offer is continuously expanding after the Corona lockdown. During the project week, students attended a lecture given by PD Dr. Horst Ficht- ner on ‘news from the edge of the solar system’, visited the Planetarium in Bochum and worked on scientific projects during their workshops. The outcomes of the research projects were presented in a poster session followed by a quiz and shared lunch, which formed the conclusion of the week.
To lower the entry barrier of the project week and offer school students the chance to participate no matter of their financial status, some changes were implemented as a trial. School students who do not own a ticket for public transport had the option to receive a ticket for transportation to and from university. Also, meals were newly included in the project week. While only break- fast used to be supplied, students could now share a
free lunch in the campus dining hall, enhancing the group dynamics and their feeling of belonging in the group.
The feedback to this changes were positive according to the feedback of the participants, so that the changes will be continuously adapted to the program of the pro- ject week The project week in autumn will presumably take place with four projects at full capacity.
- Details
FOR 5409 "Structure-preserving numerical methods for volume and transition coupling of heterogeneous models" approved
The DFG has approved nine research groups for funding. To one of those, the FOR 5409, PIs Prof. Grauer and Dr. Dreher of the Research Department plasmas with complex interactions contribute.
The research group "Structure-preserving numerical methods for volume and transition coupling of heterogeneous models" conducts research on the modeling and simulation of coupled systems to describe magnetized plasmas, complex fluids, and electrochemical processes. In coupled systems, multiple processes are considered in the same region of a selected physical domain (volume coupling) or mathematical models used in different parts of a domain are combined at common boundaries (transition coupling). The goal is to develop efficient numerical methods that guarantee important structural properties of the underlying continuous models and to implement them on high-performance computers.
The chair TP I from RUB is involved with three (of nine) projects:
Project A2 (Rainer Grauer, RUB): Coupling the two-fluid/Maxwell system to Magnetohydrodynamics/Ohm's law
Project A3 (Jürgen Dreher, RUB): Adaptivity in Computational Cardiac Electrophysiology
Project B2 (Rainer Grauer, RUB and Christiane Helzel, HHU): An Active Flux Method for the Vlasov/Maxwell System
Congratulations to the PIs for this success!
- Details
Achim von Keudell new Editor in Chief for Plasma Processes and Polymers
Achim von Keudell became with the beginning of March one of the four Editors in Chief of Plasma Processes and Polymers.
- Details
DFG approves second funding period of the CRC 1316
Plasmas for the Systems for material conversion are an important component in the utilization and storage of decentrally generated renewable energies. The Collaborative Research Center 1316 (CRC 1316) "Transient Atmospheric Pressure Plasmas - from Plasma to Liquids to Solids" is dedicated to combining atmospheric pressure plasmas with catalysis to develop the most flexible solutions possible for this material conversion. "They should be scalable, controllable and robust against external influences, such as impurities in the starting materials," explains Prof. Dr. Achim von Keudell, spokesman of the CRC.
The first funding period of the CRC 1316 was dedicated to the elucidation of transient phenomena in atmospheric pressure plasmas as well as interfacial processes at the surface of catalysts. Here, the focus was on three systems: the plasma-catalytic conversion of gases, the combination of plasmas with electrolysis at the interface between liquid and solid, and plasma-assisted biocatalysis, in which enzymes very selectively produce new molecules. The researchers were able to make great progress in these areas: For example, they achieved precise control of the formation of reactive particles in these plasmas. They were also able to gain a deeper understanding of the atomic and molecular surface processes in these systems.
In the second funding period, these findings will be brought together to make the best possible use of the interplay between a plasma with its reactive particles and a catalytically active surface. There are many further questions in this regard, since in traditional catalysis, for example, stable molecules are essentially reaction partners, whereas in plasma catalysis, reactive particles or highly excited species can accelerate or suppress a specific reaction path. On this basis, the first prototype plants for plasma catalysis, plasma electrolysis and plasma biocatalysis are to be developed.
In addition to the RUB as the host university, researchers from the University of Ulm, the Jülich Research Center and the Fritz Haber Institute in Berlin are involved in the CRC.
- Details
Approval for Jun.-Prof. Golda's DAAD project
In collaboration with Dr. Claire Douat from the institute GREMI in Orléans, France, Jun.-Prof. Judith Golda has submitted a DAAD project on the diagnostics and application of plasma radiation as a CO source for sterilization in wound healing. This has now been approved by the DAAD for 1.1.2022.
The aim of the project is to investigate the production pathways and the role of the CO molecule in the plasma treatment of biological material. To study CO generation in CAPs, two well-characterized plasma sources will be used that have complementary operating principles: A radial kHz-dielectric barrier discharge with direct contact of the plasma including ions, electrons, and strong electric fields with the treated substrate; and a coplanar RF discharge where only the field-free plasma effluent containing reactive species and plasma-generated photons reaches the substrate. This project will explore possible synergistic effects between CO and plasma-generated species such as electric fields, ions and electrons, photons, and other neutral radicals. The two complementary plasma sources will be used to distinguish the effects of indirect and direct plasma treatment on the impact of plasma-produced CO on bacteria. The plasma sources used here will be characterized with CO2 admixture to ensure that the amount of CO produced is below the toxicity limit. Parameter variations will be used to determine the optimal CO production conditions.
The project includes travel expenses to address the planned research questions.
Link to the group: https://piplab.rub.de
- Details
Virtual public 360° tour of the SFB 1316
Insights into the projects and laboratories, the opportunity to take a look at the various experiments and diagnostics and ask live questions about them - this opportunity is available to everyone on 27.10.2021 at 4 pm during a virtual 360° tour. The tour is aimed at the general public and thus offers not only researchers and students but also interested persons outside of university the opportunity to experience research interactively and get to know the projects better.
- To participate in the virtual tour, registration is requested at
This email address is being protected from spambots. You need JavaScript enabled to view it. .
- Details
Plasma research contributes to new Research Center “Future Energy Materials and Systems”
The state NRW will fund four research centers and one research college during the next years in the framework of the funding instrument "Ruhr Konferenz". One research center “Future energy materials and systems” will support the plasma science at RUB in the area of synthetic plasma chemistry. (Image (c) hagenvontroja)
- Details
Plasma Taster Day What is plasma and where is it used in technology & research?
Interested high school students are invited to participate in the Taster Day Plasma on 28.01.2020 from 10 am to 3 pm online. The chairs of the Ruhr-Universität Bochum introduce themselves.
Technical plasmas are used in many areas of everyday life and enable many achievements of our engineered world, such as in microelectronics, optics or mechanical engineering. But also in areas like air purification, sterilization and medicine plasmas can be used effectively in innovative concepts.
The fundamentals of technical applications are our field of research. We work interdisciplinary with partners from research and industry to develop innovative concepts and systems. And we would like to explain to you the largely unknown concept of physical plasmas and introduce you to how we use and research the "fourth state of matter". Furthermore, we would like to show you how you might become part of a research team in the future!
Please register by email to:
- Details
Plasma Trial Day - What is plasma and where does it find application in technology & research?
Interested high school students are invited to participate in the Plasma Trial Day on Jan. 28, 2020 from 10 a.m. to 3 p.m. online. The chairs of the Ruhr-Universität Bochum will introduce themselves.
Technical plasmas find their application in many areas of everyday life and enable many achievements of our engineered world, such as in microelectronics, optics or mechanical engineering. But also in areas like air purification, sterilization and medicine plasmas can be used effectively in innovative concepts.
The fundamentals of technical applications are our field of research. We work interdisciplinary with partners from research and industry to develop innovative concepts and systems. And we would like to explain to you the largely unknown concept of physical plasma and introduce you to how we use and research the "fourth state of matter". Furthermore, we would like to show you how you might become part of a research team in the future!
Please register by email to:
- Details
Successful Plasma Summer School in 2020 in an online format
Due to the current situation, this year's summer school did not take place at the usual location of the physics center in Bad Honnef, but online. The regular programme consisting of basic plasma physics lectures combined with a master class on special topics could not take place as usual. Nevertheless, all teachers have agreed to deliver their basic lectures via an online video format. The summer school was extended to two weeks with two lectures per day. This year more people were able to tune in, because the online format is much easier to reach from regions with limited travel possibilities.
The lectures were technically flawless and the feedback from students and teachers was very positive. Many discussions and interactions could be made possible due to the high commitment of all teachers. Two practical workshops were also held by L. L. Alves on solving the Boltzmann equation and by N. Braithwaite on analyzing the Paschen curve.
We hope for another summer school in 2021, then again in the facilities of the physics center in Bad Honnef. The latest information on the planning for 2021 will be published at the summer school homepage in March 2021.
- Details
Research data management as central aspect within the collaborative research centres
Research data is a central output of science. They expand the scientific knowledge and are the basis for future research projects. The documentation of research data should follow subject-specific standards. The long-term archiving of research data is important for the quality assurance of any scientific work, but is also a fundamental prerequisite to allow the reusability of research results.
Researcher from the INP Greifswald enrolled a BMBF funded project with the title Quality assurance and networking of research data in plasma technology - QPTDat. This project aims to develop and test processes and methods for a quality assured and interdisciplinary reuse of research data from plasma technology.
QPTDat cooperation
A collaboration between INP and the CRC 1316 started in 2018 and now the Research Department Plasmas with Complex Interactions, and also the SFB-TR 87 join the activities on research data management. A workshop organized by INP Greifswald in January 2020 was the starting point for further active implementations in the field of research data management in the plasma community in the CRCs as well as in the Research Department.
First measures at EP2
As a first measure, an initiative at the research group EP2 at RUB results in an improved data storage on the local server of the institute. The storage volume has a regular backup and granting access to the complete group or to individual persons is possible. Beside measurement data, all further analysis steps are documented including meta data from all process steps. The members of the research group used a file name scheme, so that files can be found easily by other researchers.
Research data repository
Finally, published research data can be stored and published for the open public on the repository at
The idea of such a repository is the full documentation of measurement conditions (measurement data in a readable file format including meta data). First research groups from the CRCs have access to this repository and upload research data of published papers.
The concept of the repository is based on a multi-level system for publishing records. Users can put data online for review, which are then published by group moderators. The standards for publishing records must be defined by the group. In addition, meta data standards are currently being developed within the CRCs and together with INP Greifswald, so that data entry will be clearer and more uniform in future.
NFDI4Phys
Recently, the Research Department Plasmas with Complex Interactions has started to join the collaboration of different scientific institutions within the so-called
NFDI4Phys consortium. It aims to create structures and tools to simplify and unify the exchange of (mainly) numerical factual data in all areas of physics, with related disciplines and with the industry. The consortium is applying to the DFG for funding within the National Research Data Infrastructure (NFDI) project.
Within the framework of the NFDI4Phys consortium, the CRCs developing meta data standards for research questions in plasma science. Further goals are to contribute to the definition of basic and interdisciplinary standards and to develop methods to make research data from different sources generally accessible and interpretable.
- In case, you need further information regarding this topic, please contact
This email address is being protected from spambots. You need JavaScript enabled to view it. via mail.